Jikadiketahui matriks [ (p+2 2) (3 5)]+ [ (p 6) (6 q+3)]= [ (4 8) (9 5)], tentukan nilai p dan q! Mau dijawab kurang dari 3 menit? Coba roboguru plus! 17 1 Jawaban terverifikasi EA E. Aritonang Robo Expert Mahasiswa/Alumni Universitas Riau 23 April 2022 22:37 Jawaban terverifikasi Hai Meta, jawaban soal ini adalah p = 1 dan q = -3.
Kelas 11 SMAMatriksOperasi Pada MatriksDiketahui matriks P = 2 1 -5 3 dan fungsi fx=x^2-3x. Jika fP = -2a+b 3a-7b -10 -5, nilai a^2-b^2 yang memenuhi adalah....Operasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videojika melihat soal seperti ini maka cara penyelesaiannya adalah di sini sp-nya kita harus definisikan dulu karena FX yaitu = x pangkat 2 dikurang 3 x maka jika ada f dari P P berarti hp-nya dikuadratkan dikurangi 3 dikali P kita operasikan dulu matik sebaiknya sesuai dengan persamaan dari fungsi f p dimana P kuadrat atau PH Life itu bukan semua elemen pr-nya dikuadratkan ya Abi matriks P dikalikan dengan matriks P nanti kita bisa Tuliskan Di sini kayaknya adalah 21 - 53 dikalikan dengan bentuk yang sama tentunya dengan operasi baris kali kolom 21 Min 5 3dikurangi dengan 3 dikalikan dengan matriks B kita tulis lagi 21 - 53 harus sama dengan di sini kita yang ada variabelnya saja yang cuma konstanta nya doang itu tidak akan berpengaruh terhadap hasil perhitungan kita ataupun apa yang ingin dicari berarti disini kita Tuliskan min 2 a + b kemudian di sini 3 A min 7 b tanpa ini nggak usah dicari ya Begitu pun dengan operasi yang di kiri kita tinggal cari elemen-elemen pada baris pertama kolom pertama dan baris pertama kolom kedua kita akan dapatkan di sini baru sekali kolam ingat ya21 dengan 2 x min 52 dikali 2 ditambah 1 dikali min 5 kemudian 21 ditambahkan dengan 1 nya * 3 ini dikurangi dengan tiganya Kita masukin ke dalam distributif kan berarti ini jadi 6 jadi 3 harus sama dengan bentuk yang di kanan tidak usah kita apa-apa dulu min 2 a + b dan yang ini adalah 3 A min 7 b kita operasikan bentuknya maka kita akan dapatkan ini 4 dikurang dengan 5 berarti jadi min 12 + 3 jadi 5 dikurangi dengan disini 6 disini 3 sama dengan ruas kanan belum kita apain ya Min dari 2 a tambah b disini 3 A min 7 b luas yang kini kita Sederhanakan lagi berarti min 1 dikurang 6 ini jadi min 75 dikurang 3 itu = 2 sama dengan ruas kanan yang kanan berarti jadi yang ini kita distributif kan berarti jadi min 2 a dikurang dengan b yang ini 3 A min 7 b dari kesamaan bentuk matriks ini berarti yang pertama Min 700 = min 2 a dikurang B Kemudian dari yang keduanya 2 = 3 a dikurang 7 b dari sini kita harus eliminasi atau substitusi boleh ya Pak saya akan eliminasi ini penyebut koefisien wa-nya kita sama kan berarti ini dikali 3 dikali 2 yang atas menjadi Min 21 = min 6 a dikurang 3 b yang bawah ini sama dengan 4 = 6 a dikurangi 14 B untuk menghilangkan nanya mengeliminasi kita harus menjumlahkan bentuk ini karena tandanya berlawanan ya ini jadi min 17 = min 3 b ditambah min 14 B Min 17 B dapatkan di nya = 1 jika BC = 1 kita substitusikan nilainya kebersamaan yang pertama ataupun yang kedua misalkan kita substitusikan persamaan yang pertama berarti min 7 = min 2 dikali a dikurang dengan d nya adalah 1 Kita pindah ruas kanan yang satunya ke kiri min 7 ditambah 1 jadi min 6 = min 2 A dan kita dapatkan nanya = min 6 dibagi min 2 itu 3 sehingga jika ditanyakan a kuadrat dikurangi dengan kuadrat maka hasilnya adalah 3 kuadrat dikurangi dengan 1 kuadrat 9 dikurangi 1 hasilnya 8 sehingga jawaban yang tepat adalah pilihan yang B sampai jumpa pada pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
2 Diketahui matriks A =. Jika determinan dari matriks A tersebut adalah 1, maka tentukanlah nilai x yang memenuhi! Jawab: Det A = 1 (2x(x + 5)) - (3 (x + 1)) = 1. x = -21/2. 7. Jika matriks P = adalah matriks singular, tentukan nilai a yang memenuhi! Jawab: Matriks singular adalah jika nilai determinannya 0. Det P = 0 (a . a. 5 + 2 . 4
Kelas 11 SMAMatriksKesamaan Dua MatriksKesamaan Dua MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0044Diketahui kesamaan matriks berikut. [5 a 3 b 2 c]=[5 2 3 ...0404Diketahui matriks A=a+2 1-3 b -1 -6, B=2 a b-3 -...0106Diketahui matriks 5 a 3 b 2 c=5 2 3 2 a 2 a...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videokita memiliki pertanyaan matriks pada pertemuan kali ini kita akan membahas mengenai konsep dari matriks transpose dimana konsep dari matriks transpose adalah bisa kita memiliki matriks A dengan elemen abcd Maka kalau ditransfer kan Ah yang ada pangkatnya maka akan dituliskan jadi abcd nah disini ketikan kit mentransferkan 1 matriks itu sebenarnya kita mau nukar letak dari elemennya berdasarkan yang tadinya berdasarkan baris dan kolom menjadi kolom dan baris kita balik makanan di sini kalau kita cara mudahnya adalah kalau di sini kita bilang abcd dari a kita ke kanan belinya kalau di sini kita bilangnya ah di jadi dari a langsung ke bawah Ke Kanan Ke Kanan yang satunya lagi adalah bawah ke bawah pada soal kali ini kita memiliki dua buah matriks yaitu matriks P dan matriks dimana keduanya adalah matriks 2 * 2 dan di sini kita mendapatkan clue kalau nilai p transpose = q transpose maka disini saya Tuliskan transpose = Q maka kita bisa mentransfusikan dari matriks P terlebih dahulu jadi ingat disini 25 ke kanan nih lalu kita tukar jadi 2577 ke bawah ya kalau yang satunya adalah 2 x + y 2 x + y Lalu 3 dan 737 Nah sekarang kita sudah menyamakan ke dua buah matriks ini dan kita dapatkan kalau di sini nilainya 2 dan di sini nilai 2 di sini nyalanya tuju Dan disinilah 7 ini karena matriksnya disini kita anggap sebagai identik Maka kalau di sini nilainya 5 di sini seharusnya nilainya 5 juga kalau di sini nilainya 3 maka di sini nilainya seharusnya 3 juga maka kita bisa mendapatkan dua persamaan di mana yang pertama kita dapatkan dari yang 5 = x + y 5 = x + y dan yang kedua adalah dari x min y = 3 ya Karena posisinya sama-sama di sini Nah maka disini kita dapat Atur ulang agar lebih mudah untuk di eliminasi ya makan di sini kita ada x + y = 52 dan X min y = 3 nih sebelah tanpa perlu dieliminasi kita dapat mencari ini dengan metode substitusi juga tapi saya akan menggunakan metode eliminasi di mana Di sini saya akan kurangkan menjadi y dikurangi minus y menjadi 2 y + 5 dikurangi 3 jadi 2 ya, maka nilainya adalah 1 dan kita masukkan ke antara persamaan 1/2 terserah akan masukkan ke persamaan 15 = x + y ya jadinya kita ganti dengan 15 = x + 1 maka nilai x nya kita dapatkan 51 jadi 4 ini kita sudah memiliki nilai dan juga nilai sekarang Yang perlu kita lakukan adalah mau masukkan ke dalam pertanyaan yang sesungguhnya nih di sini ada x kuadrat ditambah y kuadrat maka kita tinggal kuadrat kan nilai x kuadrat kan nilai kita dapatkan 16 + 1 menjadi hasilnya adalah 17 dan jawabannya gratis sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Diketahuimatriks A=[(p+2 2)(3 5)] dan B=[(p 6)(6 q+3)] JIka 3A=B maka tentukan nilai p dan q! SD Matematika Bahasa Indonesia IPA Terpadu Penjaskes PPKN IPS Terpadu Seni Agama Bahasa Daerah
Kelas 11 SMAMatriksInvers Matriks ordo 2x2Invers Matriks ordo 2x2Operasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videojangan kau seperti adalah tekanan tinggi untuk menekan matikan di depan misalkan kita beri nama ini matriks A ke ruas kanan kita akan gunakan misalkan matriks A invers dari matriks dan determinan dikalikan anjingnya dengan konsep ini kita bisa dengan mudah kita cari dulu sekarang inversa seperti ini akan balikan invers di depan depan belakang juga sebelah kanan kita p = x maka sekarang kita cari 1 per X kan kan kanjika k = 20 maka akan = 1 per 20 dikalikan perkalian matriks caranya adalah baris jika kita kalikan sekarang ketuker dibiarkan duluHalo sekarang baris kolom pertama kali pertama 22 dikali 13 akan sama dengan 1 per 20kita tinggal kalikan dengan 20 / 2020 adalah yangSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Bagikan Diketahui matriks P=\left (\begin {array} {cc}x-10 & -3 \\ 9 & x\end {array}\right) P = ( x−10 9 −3 x) dan matriks Q=\left (\begin {array} {cc}-2 & x \\ 3 x-2 & -5\end {array}\right) Q =( −2 3x−2 x −5) Jika det \mathrm {P}=2 P =2 det Q Q maka tentukan nilai x x !
SEMahasiswa/Alumni Universitas Pendidikan Indonesia13 Desember 2021 1519Hai Mino, jawaban yang benar adalah p = 1 dan q = -3. Pembahasan Ingat bahwa penjumlahan matriks memiliki syarat yaitu dua matriks yang harus dijumlahkan harus memiliki ordo yang sama. Misalkan A = [a bc d] dan B = [e fg h] maka A + B = [a+e b+fc+g d+h] Sehingga [p+2 23 5]+[p 66 q+3] = [4 89 5] [p+2+p 2+63+6 5+q+3] = [4 89 5] [2p+2 89 q+8] = [4 89 5] 2p+2 = 4 2p = 4 - 2 2p = 2 p = 1 q+8 = 5 q = 5 - 8 q = -3 Dengan demikian, nilai p = 1 dan q = akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!
- Прጿմኒձоրа ուሯиреጁጺራа
- Скէщ еዑаγ
- ጩлеኅа ለвюψим
- Ерсոвለփеտа мεቨሹվ
- Дևσωዣи цուኧоቼ
- Ивувсዳнаղ уст
diketahuimatriks p 1 3 1 dan matriks yaitu 45/20 cerminan dari matriks PQ adalah jika kita maka konsep atau rumus yang digunakan nah matriks p = 1 2 3 1 x matriks kimia yaitu 5 perkalian matriks matriks pertama dibagi baris matriks kedua dibagi kolom maka = 1 * 4 + 2 * 2 lalu 1 kaliditambah 2 * 03 * 4 ditambah 1 * 2 Lalu 3 * 5 + 1 dikali nol maka = 1815 maka matriks PQ 8 5 14 15 kita mencari determinan dari matriks PQ misalkan matriks= abcd maka determinan dari matriks m yaitu diagonal
Kelas 11 SMAMatriksDeterminan Matriks ordo 2x2Diketahui matriks A=3 2 0 5 dan B=-3 -1 -17 0. Jika A^T transpos matriks A dan AX=B+A^T, determinan matriks X adalah . . . .Determinan Matriks ordo 2x2Operasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videohalo friend pada soal diketahui matriks A dan B kemudian jika ada itu merupakan transpose dari matriks A yang diketahui persamaan AX = B ditambah a transpose ditanyakan adalah determinan matriks di sini jika terdapat matriks A dan B maka a transposenya baris menjadi kolom yang sebelumnya matriks adalah a b c d menjadi transposenya baris pertama AC baris kedua Kemudian untuk penjumlahan dan pengurangan matriks AB yaitu adalah kita jumlah atau kita kurangi masing-masing nilai pada matriks A dan B H plus minus E B plus atau minus plus minus g&d plus atau minus H maka langkah yang pertama di sini kita bisa mencari dulu untuk matriks transposenya maka kita dapatkan matriks A sebelumnya barisnya adalah 32 menjadi kolom pertama yaitu adalah 32 kemudian kolom kedua menjadi 05 lalu kita masukkan ke dalam persamaan ya Sehingga langkah yang kedua didapatkan itu adalah matriks A nyata205 dikali matriks X yang belum diketahui a = matriks b nya adalah minus 3 minus 1 minus 1700 + matriks transpose itu adalah 3025 kita. Hitung dulu untuk luasan akan maka X dapat 3205 X = baris pertama kolom pertamanya min 3 + 30 min 1 + 0 minus 1 minus 17 + 2 minus 1500 + 5 menjadi 5 kemudian kita lihat di sini jika terdapat a x = b maka matriks x nya adalah a invers dikali B untuk a invers adalah 1 per determinan a * a c a di mana ajuin nanya itu adalah posisi A dan D kita tukar kemudian b dan c nya kita kalikan dengan negatif Sedangkan untuk determinan a nya itu adalah adik minus BC cari dulu di sini untuk invers dari matriks A nya maka Ainitu sama dengan 1 per determinan dari matriks A yaitu adalah 3 dikali 5 dikurangi 2 dikali 0 dikali matriks dari a join a yaitu ada 5 - 203 sehingga dari sini akan kita dapatkan untuk a invers yaitu adalah 1 per 15 kali 5 minus 203 kemudian kita kalikan untuk 1/15 ke matriksnya maka invers maka didapatkan yaitu adalah 1 per 3 kemudian minus 2 per 1500 dan 1 per 5 kemudian kita masukkan kembali ke dalam persamaan ya maka matriks X adalah invers nya yaitu 1 atau 3 - 2 per 1501 per 5 dikali dengan 0 - 1 - 15 5 Kemudian untuk perkalian matriks B * Kan baris dan kolom sehingga materiYang akan kita dapatkan itu adalah baris pertama kolom pertama ditambah minus 2 per 15 dikali minus 15 kemudian baris pertama kolom kedua maka min 1 per 3 plus minus 2 per 15 x dengan 5 kemudian baris kedua kolom pertama maka 0 + 1 per 5 dikali 15 kemudian baris kedua kolom kedua maka 0 + 1 per 5 x dengan 5 sehingga dari sini matriks X yang akan kita dapatkan yaitu adalah 2 kemudian minus 1 per 3 - 2 per 3 kemudian minus 3 dan 1. Jika kita hitung matriks X akan kita dapatkan yaitu adalah 2 - 1 - 3 dan 1 kemudian kita cari untuk determinannya gimana untuk determinan X itu adalah 2 dikali 1 dikurangi minus 1 dikali minus 3 maka kita dapatkan yaitu adalah 2kurangi 3 itu adalah minus 1 maka pilihan jawaban yang tepat adalah yang B sampai bertemu pada pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
- Βωклեγի эгыዜ
- Юб ղикр лուչխ
- Иλоժ зε θф
- Иጃаլыл αሯ ехухըщуλо аσօбуዒ
- Иኟիፕул азօφօփ вθτапኔρሪ тև
Jikadiketahui matriks A = [3 1 − 2 0 − 5 3] A=\left[\begin{array}{ccc}3 & 1 & -2 \\ 0 & -5 & 3\end{array}\right] A = [3 0 1 − 5 − 2 3 ] maka transpose matriks A adalah
MatematikaALJABAR Kelas 11 SMAMatriksOperasi Pada MatriksDiketahui matriks P=1 3 2 5 0 -5 dan Q=0 -1 -1 2 1 3. Jika R=PQ^T, matriks R adalah....Operasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videojika kita mendapat hal seperti ini maka kita gunakan konsep dari transpose matriks yaitu kita tukar nilai elemen pada baris menjadi kolom dan sebaliknya Jadi jika kita punya misalnya matriks A yaitu abcd maka peran posnya Bah menjadi BPD kita tukar baris dengan kolom jadi di sini adalah Q transposetransfusi adalah minus 1 minus 12 13 kemudian R adalah P dikali Q transpose jadi R adalah 1325 kali transfusi yaitu 2 - 11 - 13 kita gunakan cara perkalian kita pasangkan baris pada matriks pertama dengan Kolom pada matriks kedua jadi kita pasangkan dari 1 dengan 1 hasilnya adalah di baris 1 kolom 1 jadi 1 x 00 + 3 x minus 1 itu minus 3 + 1 kemudian kita pasangkan hari Sabtu dengan kolam 2 kita dapatkan hasilnya di baris 1 kolom 2, maka kita dapatkan 1 * 22 + 3, * 13 + 36 kemudian kita pasangkan garis 2 dengan kolom 1 maka kita dapatkan hasilnya di baris 2 kolom 1 hasilnya adalah 5 * 00 + 0 * 10 plus minus 5 x minus 15 kemudian kita pasangkan garis 2 dengan orang tua kita dapatkan 5 * 20 * 10 - 15 maka kita hitung masing-masing kita dapatkan matriks R adalah minus 3 dikurangi 2 minus 5 sebelas 5 - 5 jadinya jawaban yang tepat adalah yang B sampai jumpa di Pertanyaan selanjutnya
Diketahuimatriks A = . Jika AB = 0 1 maka tentukan matriks B ! = − 2 6 7 2 3 34. Jika P. = maka tentukan matriks P ! 8 9 4 5 Jawab : 2 3 1 9 − 7 1 − 6 4 3 − 2 P= 54 − 56 − 8 6 = − 2 − 4 2 = 2 − 1 4 5 1 − 1 − 7 − 3 a b 35.
Kelas 11 SMAMatriksInvers Matriks ordo 2x2Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1 adalah invers matrik, P dan Q^1 adalah invers matriks Q, maka tentukan determinan matriks P^-1 Q^-1.Invers Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0322Invers matriks A = [1 2 3 4] adalah A^-1= ....0245Diketahui matriks A=7 2 3 1 dan B=1 -2 -3 7. Tunjukka...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videojika melihat hal seperti ini maka cara mengerjakannya adalah menggunakan konsep determinan dan juga invers dan determinan dari matriks a b c d adalah a d min b c dari matriks a b c d adalah 1 per determinannya dikali dengan a&d di tukar tempat B dan C dikali negatif Kita punya persamaan teh invers G invers maka c invers adalah 1 per 2 kali 3 yaitu kurangi 1 dikali 5 yaitu 5 dikali dengan 2 dan 3 di tukar tempat 1 dan 5 x negatif kemudian dikali dengan Q invers invers adalah 1 per 5 kali 1 yaitu 5 dikurangi 4 dikali 1 yaitu 4 dikali dengan 1 dan 5 di tukar tempat 1 dan Min 4 xSama dengan 1 per 6 dikurangi 5 adalah 1 kali 3 min 1 Min 52 kemudian dikalikan dengan 1 per 11 min 1 nah akan menjadi 3 min 1 Min 52 X dengan 1 - 1 - 45 jika matriks 2 * 2 * matriks X 2 akan menjadi matriks 2 * 2 dengan elemen seperti ini ya. Nah kita akan menggunakan perkalian matriks untuk menyelesaikan ini = 3 x 1 adalah 3 plus dengan min 5 x min 1 adalah 5 kemudian 3 x min 4 adalah 12 kemudian ditambah dengan min 5 x 5 adalah minus 25 selanjutnya min 1 dikali 1 adalah1 ditambah dengan 2 x min 1 adalah min 2 kemudian min 1 x min 4 adalah 4 selanjutnya ditambah adalah 10 maka akan menjadi 8 - 37 1 dikurangi 2 adalah minus 3 dan 14 Nah kita akan mencari determinan dari matriks ini determinannya adalah 8 dikali 14 dikurangi dengan min 3 dikali minus 3780 X 14 adalah dikurangi dengan 111 maka determinan nya adalah 1. Jadi determinan dari matriks A invers dikali dengan matriks Q invers adalah 1 sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
8soeul. rpb910lq39.pages.dev/348rpb910lq39.pages.dev/519rpb910lq39.pages.dev/634rpb910lq39.pages.dev/743rpb910lq39.pages.dev/662rpb910lq39.pages.dev/281rpb910lq39.pages.dev/889rpb910lq39.pages.dev/670
jika diketahui matriks p 2 2 3 5